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STRONG REPRESENTATION OF WEAK CONVERGENCE

Z. D. Bai and W. Q. Liang

,7.

ABSTRACT

Let P n 1,2,..., and v be a given sequence of probability measures

each of which is defined on a complete separable metric space Sn and S

respectively. Also, a sequence of measurable mappings cn from Sn into S

is given. In this paper, it is proved that if un 0 n weakly converge to ,
n" n

then there is a probability space (Q,F,P), on which we can define a sequence

of random elements Xn9 from Q into Sn , and a random element X, from Q

into S, such that P is the distribution of Xn, j is the distribution of

X and lim ,n(Xn) = X pointwise.
n n

The result of Skorokhod (1956) is a special case of the result of this

paper. Some applications in the area of random matrices, etc., are also given.
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1. INTRODUCTION

It is well known that there is a big difference between the concepts of

weak and strong convergence of random variables. In the area of limiting

theory, it is of interest to study the difference as well as the link between

the two concepts of convergence. Recent research work motivates us to investi-

gate them. In Section 2, we shall prove the following theorem.

/ r

THEOREM 1: Let Sn, n 1,2,..., and S be complete separable metric spaces,

with distance functions pn and p respectively, and let 0n be a measurable

mapping from Sn into S. Suppose that un and u are probability measures

defined on S and S, the Borel a-fields deduced by the distances pn and p,n n
1 Wrespectively, and suppose that pn . 1 n -. Then there is a probability space

(2,F,P) and a sequence of Sn-valued random elements Xn, and an S-valued

random element X, defined on (P,F,P), such that

1) Xn has distribution n and X has distribution ,

2) lim n(X n X, pointwise.
:' n n

IZ

In early 1956, Skorokhod proved a special case of Theorem 1, where S n  S,

for each n, and 0n are all identity. It should be pointed out that our

Theorem 1 is not a trivial generalization to Skorokhod's theorem. Theorem 1

played a key role in the proof of a theorem in Yin (1984), but Skorokhod's

theorem is not applicable there.

Although Skorokhod's paper was published in early fifties, it seems that

Skorokhod's theorem had not received much attention unfortunately. For instance,

the Helley-Brary theorem can be easily obtained by Skorokhod theorem, but in

I.,--•.." " , .-". ." .. '"" 'L '". ' .. ' " -. ' -"•• "," " , ' ,"," '. -. - . , , ." " •.' , , ". "-". .". . .
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many recent probability textbooks, it was still proved by the approach of

integration by parts. Even though the proof of Skorokhod's theorem seems a

little complicated, we can give a very simple proof to the special case where

S = S = Rd, the finite dimensional Euclidean space.n

The power of Theorem 1 appears in the situation that we often

encounter in large sample theory. Suppose that n + , and F(.,.) is

a two-variate continuous function. We are concerned with the limiting behavior

of the roots of the equation F(o (Y ),X) = 0. In general, the roots of
n n

F(y,X) = 0 do not have an obvious expression, but in many cases we can prove

that the solution x = x(y) is continuous in y. In these cases, by Theorem

1, we only need to investigate the behavior of the solution of F(,,x) = 0.

Some concrete examples can be found in Bai (1984), Bai and Yin (1984) and

Yin (1984).i
We generalized Lusin's theorem to the measurable mapping from a complete

* "separable metric space into another one. This result is stated in Theorem 2

and it played a key role in the proof of Theorem 1.i

...................
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2. A GENERALIZATION OF SKOROKHOD'S THEOREM

We first assume that each on is continuous. At the beginning, we

construct a series of countable partitions of the space S as follows:

Let B(x,r) denote the ball in S, with center x and radius r.

Because S is separable, there is a countable set {x i , i = 1,2,...}, which

is dense in S. Because there are at most countably many values of r such

that (B(xi,r)) > 0, for some i, where aB denotes the boundary of the

set B. Thus for each k, there exists rk 2 (k+) < rk < 2- , being such

that p(aB(xi,rk)) = 0 for any i = 1,2,.... Write C(k,1) = B(xlsrk),
i-1

C(k,i) = B(xi,rk)\ U B(xjrk), and set
j=1

k
Di. i k  .=j l C(j,ij) (1)

1 2 k j=1

for any ii 2  ., i k 1,2,.... It is obvious that {D - i satisfies

the following properties:

1) D il"'i Dk n J l'"Jk. ik if (il,..,k) (JI""'JR)'

2) D. i k U D S U D.11"'" -1 ik =1 ... 2 " k i1=1 11

(2)

3) p(3Di . ) = 0,

4) < 2 k, where d(D) denotes the diameter of the set

D.

Using the same approach, for each n, we split Sn into partitions

,. . .. .--, . . ...-. . ,'. .... . ..-.. .... ..- .... ,..,.. ..... ?.;..... . . y .. .. S .-.S . -. -? ,
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1, . k having similar properties as {D.. . Write

D !n). D D n )  o1D., (3)Ill .i k k n  " " Jk

and

P(n) (Djl,...,jk)l ...n(D (4P ... 9,i k 1,...l ,i k(J ' '  ' k))4

It is obvious that d(Din) . <11, .. ik(J1, . ,k ) < 2 .

Let 2 = [0,1), F be the o-field of all Borel sets in si, and P be

the Lebesgue measure restricted on F.

Split into partitions {I (n ) (j1,...k with the followingil i1 ... ,i k

properties:

1) Each lin) (J . is an interval closed from left
1l ,. .. 

n

and open from right, and has length pi .. 1,i

2). For each n and each k, {I (n )  is a
1 '...,i k

partition of [0,1).

(5)
3) 1I(n )  Uj, . ,k l U I ( I n )  ( l . .j )

i 1 ." i k-i kik= Jk=l 1 1 .... i k

4) If i k < ik ,  for any l,...,ik_ ,  il,. .,k, jl,...,j ,

in) ... kJl, ..., 9k ) is located on the left of

I(n) (Ji

l l t ... Ii k_.

-- " : ," ' - # ," 'b" t ," , . =-." .. . -,-.. . . . .. . . . . . . . . . . . . . . . . . . . ..-.. ,-. .,-.. .- -. ..- ,'.-.. .,'.
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5) If it < Jt, t < k, then for any il,. .,k' l,...,Ji t-l, Jt+l,...,94 9

'k ) I ... , is located on the left of

Iil,...,

We take a point x.n) . k ) artibrarily from D n )
ll "'ik kll k ('"Jk)

if it is not empty and define

x(k)( ) = x(n) k ,jk)  if n) i II*(',.,k. (6)

X n1= i1f 1" ". . . i k

ltk islale keas

Evidently, for each n and k, Xn is measurable. Because

D n) (Jl ... l )C (1, .,ik .9
'1. . , k + 1  ..I lk

and d (Do).'i ol)..<2
1" "'ik (J " 'k)

we have

Pn

Thus for each n, IXnk , k = 1,29 .. forms a Cauchy sequence and there exists

a measurable function Xn such that

X(k) , X n k =, V (8)n n

because Sn is complete. Therefore, we have defined an Sn-valued random

element X n for each n.

.- "- .-'.-..-. .... ".----.- •.. -.. .-.'-.'-.- .--. .-'--"..-..........................-..-..'" "--..--...-.--.-. "-.'-'--... . . .-..-.. "--- -" .
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Next, we shall prove that ln is the distribution of Xn' Take any open
=x(n) x(n)~ 1

set AnCSn, define Amn = {x An; n(x ,An) > }, wlere m is a

positive integer and An  is the boundary of An and

Pn(x n),B) = inf{P(x(n),y(n) ) 'n e B}. It is obvious that for each pair

(n,m), Am,n is an open set contained in An~ and Am,nCAm+ ,n. Thus we

have an expression of A as followsm,n

A E .Dn)(j) +1 D(n)2(JJ) + .. (9)
nm (l1, .)EN ( 1 i ;j1,j)E (n) 1112( 1' j  1m l'i 2;J'2) 2,m

whee ,(n )  V(n )

where m 2,m"'" are suitable index sets and all the right hand side

terms are disjoint each other.

For each k with 2-k+1 < 1 we have
2m

Pn(XnX(k) < (1)k-< 1 (10)
n 2 2m2 "

Hence

(Xn £ Am_1,n)cIx~k) Amn) (Xn Am+l,n).

Thus

-( e A ,) P( k Am,n) < P(X n E A m+l,n)" (11)

On the other hand, we have

P(x(k) Din) ())

P(Xk) c Am,n) 0 j )(n) n £ 11

+ P(k ED(n)+ ., n ) P(Xn D.n)(J,J 2)) + .

(i 1 i2;J1 2)£ 2,m

0. 

.i. 
.) 

n)
...m
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+ (n) JE~n ( (jlj 2)) +

(n)(mn (12)2

Fromx (11 an (12 it) folw ta

n-, nA m~n n12

Fr(13 we d getitfllwta

P(X nEA n) 11 n (A n) (14)

Therefore, P n is the distribution of Xn for each n.

Write

and split into partitions {I. such that

1) for each k, (I. jik k 1,2,...l is a partition

of Q,
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2) each I. . is an interval closed from left and open from

right, with its length pi i '

M1

3) I . ., k I  ik 1
*1.'k-li kj=1 19. 'k

4) if ik < ik , then I, ,i is located on the left of

1.
11...,'k-lik

We arbitrarily take a point xifrom D. for each
il . I 11 ,... 91k

il..k) and define

X(k) = x. if W E: I.k ' k

Similarly as before, we can prove that there exists an S-valued random element

X such that

(k) -kp(XX) < 2 (15)

and that u is the distribution of X.

To complete the proof of the special case of Theorem 1, we need only

to prove that

On (X) X, a.s. (16)

Write

(n) ')I(n)
I1 "ik ji1 k1 l 1... ' J

According to the definition of lI,. i1...i has
k k'I'F 1"k

analogous properties as lil,. .i , and their length satisfies

.- . - .- . .-.. . ... . ... - . . . . ., . - ., , . - - . .,. . - ' - - - ., , ' - % . ' o "
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n) Ci l ~n)  i : "'" n(D~ n  i Jl .. ,J )
Yl"i Jl J=l 1 n " k

k1 "' k

-1W

Since u(OD. i ) 0 and n n 0 - , we have11g....

I (n) - (D . ) '  as n * . (17)ill k " k

If w is a point of 2 and is not an endpoint of any interval I.

k = 1,2,..., i1l... i k = 1,2,..., then for each k there exists a k-multiple

(al k k )  such that w is an inner point of I . In view of the

definition of {I.1 . }, we know that the left and right endpoints of

I are

C-1 a 2-1 k-
ak L(D.) + Y 2 (D ) + " + i U(D "" i

1 2=1 1 Ot 2= 1 2 k =1 1-c k- i k

and

bk  = a 1 .... ,t k

Similarly, the two endpoints of I(n) are

Q - 2 - 1 c k -an) (n) (n)

(n) = Ii1 [ 1 n  + ... + 1 1I(n)
1i2=1 a1

1
2  ikil " 'a-i

* -. * "* *- -* - .. . . . . . . . . . . ... . . . .. .-*. : . .-- * -



23

CO (Nz+l)e

2 j=l 2j 1(N 1,...N +I

Finally, we shall prove that

v. (x E S1 , ,(x) is discontinuous at X) 0 .

If x £KK 0)I "uk'I for some k and a ~ 0 1 codn

to the definition of t (x)

k

Hence (x) is continuous at x. If x &\ k.J K 0 , then for any k, there

exists a k-pie (aP ... ,) such that x e K ai'"ak, a I < Nl,..,ak N k'

Since K al'ok is an open set, we have that o x,,I l" ak) Ok > 0

If y E S 1  and I'xly) < Ok then y e K al . Hence

and

k =) Y )

Therefore,

........................... *k-2.~ .t.' . .
.. .. 1/2
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+k-i N 1  N.( +)

j=1 i 1=1 ij= 1 2+(ii., 1

+ kI
j=1 2j+(N 9..N +1)

Thus

U K < +(31)
k=l 1 j=i 2j+1 ('J ... IN +1)

On the other hand, we have

k-I' N 1  Nk K. 'k

N 1  Nk

I I(K k I I, (K** A

i=i ik'4 ii - .i El .

N1  N k ik

* .. I I L(GiP l Ei . . Si j

kl2> k+1 32N1,.. ,Nk Nk E/ (Ns ,-Nk+1) < ::/2(2
k * k (

By (30) (31) (32), we obtain

ii ~() (X)) lim (X)~ I -(x)) > ? 2 )

k>--:.w: I:* ' -- '. .*. 1 ..
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N1  Nk-l

11" k-k'-l"-

N 1  Nk-21
+ 21 1 ((1w D ' 2\K.l
i1 1 ik 1 l' 'k-2 1 1 k-2

k-i N1I N

k-i N1  N.i

2 .. v(G . A E

+ i(G~

k-i N 1  N.i

J~ iL= '' j 1 2 1(Nl . 3N 2

11a.,j :1'

k-i N1  N..

£ ~ ___=__I_ =1 2__(N _ . _._I __+1)

i2

1.

IE. ,. ~ 1A
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We have

J 1 ik=1 1' k

N1  Nk

1 1l Gk 1

NT k = 1'.

+ ( N 1 '... /?(j EN. E )

Ni N k

N1 Nk

2 = 21 1 ' D k ill .. ik i' l .. 'k- 1 1,. -

+ Nkl(.Nk N/ ~ N,..N

N1 N1kl-

kili k 'il '.I k- i'' ' -

N1  Nki 1

1D. K
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By the definition of and ¢k+1 we get that

Ok(X) = Y a k E Da, ..,ak

yel = D I":_Da

Ik+1(x) a l B 1 'k k+ 'k

Therefore

P(h k(x), Ih+1 (x 2 2- k

Thus there must be a limit point, denoted by EW(x), of the sequence k(X).

Combining this and (26) we obtain that lim sk(X) = ,(x) pointwise. (27)
k-).

Now we shall prove that

1( '(x) (x)) < . (28)

Note that if x UJ Kk, we always have
k=1

( (x) ,k(x)) < 1/2 k- , for any k > 1. (29)

Therefore, for any k

k- < U k)+

k=1

1 Nk

+ P (0 (k(X) I 6(x) > 2-x-_ , x U .. Ki  , " (30)i=1 ik=l k

i - i -. '' 1 -' -. ',. .-
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5) K. i =Gi ,Ki : G I \Gi.l i

5) 1 1 1l.k- 11 Kil-Sk 1  ( 1'.*''k-1 A i11 .. k-i11'' k-I I  I'""k-I I '  I k1U i-2G

Nk-I0
KN = (G 1  \ ) Gil . o

ik-l .k 1 1Nk

k I Nk-l N k
6) i 11k.. 1i k

1 "' 11""' k

ik1
ii : i :I I" " 1- '

7) k(x) Yi1 . " k if x Ki k < i, < NI,... < i k  < Nk

W if x E K I -.. ,ik . .

ko

If x E K0  for some kO, then for any k > k

=k(X) : k o(X) (26)

NI  Nk
beauek 1 k K(kl)I, ' 1 . fx Kk

because K0 ),...,U Ki.,.,i C SI1 K0 -K" If x K- ol
il=1 ik l "" kk=

then for any k, x E 0 *.. Ki 1 . Suppose that x F K I
ii=1 ik=l

and X E K . Since K G K

and K i. s are disjoint, it follows that 31= Sk1k ak

*''" k . -

- . . ' . . -. ' . .' - ' . " . .- ' . ' .' - . .," ' .- .- , p. - ' ' . - '.P. . -, ..p , .. ' .. . " -. " . .' . " , . . - ..-" . ,..- . ' . , . . ' , ' -9. ' '
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Write N2-1

Ki Ki i 2 (Gi 2\Gi 10 (Gi N\UL G i2)
11 1 1 1 1 12 12 12=1 12

and

N2  N2

K2  (K 2 2
0 1  1 1 2

Define

y. .~ if x , 1 < 1 < NI , 1 < i 2 < N2 ,

Yi 1 if x Kili2-2
Y x' J(x) if x E K 1U K2.

Then let Ei i 2i3 = K .i2 ( 1  
. 2i 3 , 1 < i I < N1, 1 < i 2 < N2,

< i 3 < N 3. Similarly define Gii i3 K . K3  and ii 3 By
1 112, K .i k ' 3kx)3

induction we can define Ell,...,i k  i " ' K I k

satisfying the following relations:

1) Eil = Kil -i n Di  .. s, ' 1 < iI < NI,...,1 < ik < Nk.I) ,. ., k  ,. ., k I  1' "" k'

2) G. k 1i ,i , Gi  s'S are open sets.
" ' "k1"'1k-1 2"'"

3)~(. AE.i  ) < El2k (Nl,... ,Nk+l)23) u(Gill. ik A i '.,i k < F/ ~ N l-,k+

4) j( Gi  ,i ) : 0

.......................................... .. /...
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Le Ei Dl*For each i there is an open set G, such that

* and

2p(G. A E. < c/4(N1+1)

Write

K G1, K2 = (G2\G1)0,..., 
1(N (G G~3 0
1 12 1=

1 
01

and K% =S 1\ K, where A0  denotes the interior of the set A. Define

O1(x) .j 1 x ~ iL Y0  i f x F-K0.

Secondly, let E .= Ki n -'(D~ i~) Then there exist open sets
Y2 1 1l2

G. i1 < N. I 2 < N2  such thatS11i2' 1 1i 2 2

1) G~ c' K 1  11 1,2,...NJ, '2 1,2,. N,

1112

2).(9-A ii <E8N 1

~~~ 2 1.. 2 .. . . . .
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n (X n) -*X, a. s. n - .(25)

nn

holds pointwise. Theorem 1 is proved.

Now we turn to prove Theorem 2. Suppose that Sl and S2 are two

* complete separable metric spaces, v is a finite measure defined on

S11 : Sl - 2 is a measurable mapping.

Using the same approach, we split S 2 into a sequence of partitions

{Dj **~k'i~..i 1,2% ...}1, k = 1,2,... such that

D. U Dil ...l k =2,3,...

S2 *U D~
2 i1=1 1

and d(D. k < 1/2 k. For any fixed E:> 0, we can select a sequence

* of positive integers N1,N2,... such that

*N N
D ,(jf(S)O + (S * ++ E

*l..i i4 1 ~ 1k 1 1 2 2k+1

for any k =1,2,......Without any loss of generality, we can assume that

each D~1  . is nonempty, i-I1  1- l.SN1,...,k = 11...Nk. Arbitrarily

take yi 1'. k E 1'. . ,' k~ an y i<N 0  C

..............,....k k*.,*.*, an y E *

2, 2 . *
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On the other hand, it is obvious that

;'B qn1'" A B C__D

where A A B denotes (A\B)U(B\A). Thus we have

1v

B- ; 44 B < (;-n A (DB ) < ()nnnn B v n  _n n 2n

as n-'--.

-1 W

Therefore (24) follows from the above estimate and the fact that J W~

According to the special case that we just proved, we can find a probability

space (" F, P) on which there is a sequence of random elements Xn and X
n

such that

1) Vn is the distribution of Xn, i is the distribution of X,

2) n(Xn) X pointwise.

* Since

: .. / p(W: n(X n(w)) Cn(X(W)))

n=n

'' Z Un(X Sn ;n(x) ( n(x))n:x nn n
°n

N - 1"" < < 0I< ,

n=12

by Borel-Cantelli lemma we know that

--------------------- **** . . .
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Example: Let S1 = [0,1] with Euclidean norm and Lebesgue measure, and let

= {0,1} with p(0,1) = 1. Define

I I[o, ](x) , x C s,
'2

where IA denotes the indicator of the set A. For any E < 1 we cannot

find a continuous mapping 4 : S1 -) S2 satisfying (22).

A little more complex example yields from the above example with the

measure replaced by 1j:

(B) : L (B) + rEB B E([0.1]),

n 2

where L(B) is the Lebesque measure of the set B and Q = {rn , n = 1,2,...}

is the set of all rational numbers in [0,1].

:" Before we prove Theorem 2, we first use Theorem 2 to complete the proof

of Theorem 1. For each n, according to Theorem 2, there exists a measurable

mapping ;n such that

n 1;1" ) jin( n ,n n) < 112 n

2) iJn(X C Sn; n is discontinuous at x) =0.

We shall first prove that

In n (24)

*:: Let B be a Borel subset of S and Bn = n B = n1B Denote by

" D = {x E S b (X) / @n(x)}. By the definition of n we have jn (D < Ln nn n n n n
*P.

* a - a a *..oV ,w
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Since P(N) = 0, Xn  and Xn  (correspondingly X and X ) have the same

- distribution. Thus Theorem 1 holds when n are all continuous.

Note that the continuity of n is only used in deriving that

. (Xn),cn(Xm))) - 0, as m

* (see (20) and (21)). We can relax the continuity restriction as the following

lin{X E Sn; n is discontinuous at x} = 0,

for each n. Therefore, to complete the proof of Theorem 1, we only need the

following generalized Lusin's Theorem.

THEOREM 2: Let S and S be two complete separable metric spaces, ' be
1 S2

a finite measure defined SI and let be a measurable mapping from S

into S2 . Then for any E > 0, there exists a measurable mapping E: S1 S2

satisfying

• "I 1 C) < ,(22)

2) w(x F S1, 6F is discontinuous at x) = 0. (23)

Remark: The main difference between Theorem 2 and the ordinary Lusin's Theorem

is the condition (23). But in the general case, we cannot require that is

continuous. This can be seen from the following example:

ai
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From this and $n(X(k)(W)) E D~l"k we get

(m)(w)), n(X~k)(w)) < 2-k (20)
(#nt n n n' < 2 k

From (19) and (20), we get

P( (Xn ()),X(W)) < 3
"2-k + P( (Xn (W)), ,n(X(m)(w))). (21)

Since is continuous and X(m)(W) -, X (w), m , it follows that
n n n

p(n (X n(w)),X(w)) < 3.2-k

This proves (16) because the set of all endpoints of Ii

k 1,2,..., is...,ik = 1,2,..., is countable, hence its Lebesgue measure is

* zero.

Let NC 0 be the set on which n (X n()) do not converge to X(w)

and let n(Xn(wo)) X(wo). Define a new sequence of random elements

as follows:

Xn () if ,0 E P N
L.Xn (w) = i" n( ) Xn ( O) if W E N

* and
X(W) jf W \ N

X(W)
X(WO ) if W EN

, Then we have

n (Xn(,o)) - X(w.) pointwise.

n

,'-,• .. .. ., -, . .' -.- .- ." . ,-.- - . .- . . ,..- . - - . ., . . .- , . . -. - • -.. -, . ,,- - . ... ,. .. ,,. .- ,.*-.. z...,... ........ . . . . . . .. ,.. . . . -. . . ...". . .....' . .".":"- '*-" ' -".' '.".'.'-.." ''," .', .-. '''-..*'.. ."-. ...- "","",
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and

bk =a n) Cl... k .

From (17) we have that

a ) ak ( )
k, k (n

and

b(n) bk (n oo)
k bk

Therefore, when n is large enough) w c I(n) Hence•k

3n(X (k)(w)) E D l"

Note that X(k)(w) e 0, ak we get

P,' (X(k)(w)), x(k)(w)) < 2-k (18)
n n

From (15) and (18) it follows that

< -k+1 (9

:i~i ( (X (k) (w)) X(( < 2 -k l  (19)

For fixed n and k, and for any m > k, there exist ak+lctk+2,..

Such that (n) . Thus we have

-oCD (D
." ~~ ~ M X (mW) E - (Dl,.. ,..,

or

1 k"", , " m ~ " -' #, , , ,, " " #  " q . ', ° ," , . " - .- - m , '# ,- .". , " ' . . • . - o '° 0- ' .' ... - '. ',k°

-* . , ., -.4 , . ' - . .. . . . - . - .. ,. -\ . ,. . .. - . . . .-.-. ,. .-. , . . . .. ,- , .-. . . .
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Since k is arbitrary, we have proved that E (x) is continuous at x.

Thus.. N1  Nk

-(x S , W(x) is discontinuous at x) < kl I,-..,k = u(;Kil"'ik) =0.
-~k=1 i I 1 ikl=

This completes the proof of Theorem 2.

3. A SIMPLE PROOF OF THEOREM 1 FOR THE FINITE DIMENSION CASE.

3.1 ONE DIMENSION CASE

Suppose that Fn  and F are one-dimensional distributions satisfying

that F - F as n -. Let P = (0,1). F = B(0,1) and P be then

Lebesque measure restricted on Q. Define

Xn( ) : Sup{x: Fn(X) < r } , (0,1),n n

and

X(w) Sup{x: F(x) < w}

According to this definition, it is evident that Xn(w) _< x,

nn.. x e R' is equivalent to the fact that Fn(X) > . This ensures that Fn

is the distribution of Xn. Similarly, F is the distribution of X.

For any W E(0,1), take arbitrarily x0 < X(.) aid x0  is a

continuous point of F(x). Then F(xO ) < w. Since x0  is

a continuous point of F(x) and Fn-- F, we have Fn(XO) - F(xo). Thus

when n is large enough we have Fn(xO) < w, so that Xn(w) > xO. Hence

X(W) <lim Xn () for any w e(0,1).
on-
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Let , e(0,1) be such that for any > 0, F X(,) + c > w. Take e > 0 such

that X(w) + e is a continuous point of F(x). Since Fn (X(W) + e

FX(w) + e) > w, when n is large enough we have Fn X(w) + > W.

Thus, according to the definition of Xn(W) , Xn(w) <X(w) + E. This shows

that limXn(w) < X(w). Hence, lim Xn(w) = X(). If for some W E(0,1),
n n

there exists a constant E0> 0 such that w = F X(W) + 0, then for any.

0 < C < C09 F () + co) > F (X(W) + C > w = F( X() + CO Hence

F (X(w) + e)= F (X(w) + CO W. Thus there exists a rational number

y = y(W) E (X(W) , X(W) + .0), corresponding to w. If there are two points

W I < w2 which correspond to Y1 9 Y2  respectively , we shall prove that

Y1 < Y2- In fact, if wi = F (X(Wi) + Ei) Ei > 0, i = 1, 2, .then

* X(WI) + El _< X(w2). Otherwise, X1(wI) < X(w2) < X(,)I) + CI < X(W2)+ E2 would

" imply that w F X(W1 ) + EI)= F(X(w2)+ £2) = ,2. contradictina to the

assumption that w1 
< w2. Thus there are at most countably many w such

that Xn(w) --\ X(w). Hence

X n (w) X(,,;) a-s , n--*

As before, we can change the definition of Xn(w) and of X(w) at

those w's at which Xn(,) X(,.), so that

X n ( X(,) pointwise, n-.

, • • ° o . . ° • ° - =-•. - o o . ° ° o , , - ° ,° ° ' • ." ° °**.°*°oo.- o .=o° • . . *% o' ° °
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3.2 TWO DIMENSION CASE

Let F(n)(. , )and F(. , ) be two-dimensional distributions such
(n) w(n)((n)(

* that F~n ~' F , n - .Let Fn() and F (1x) denote the marginalx y

distribution of the first component and the conditional distribution of the

* second component when given the first component to be x, corresponding to

* F(n). Define random vectors (X Y)on n = (0,1) x (0,1) as follows:

x Xn~ii Sup F~n)(X f~~Ol

{n(wl~ Y n(")) x (uX:Fi)(I~G ) < W, , if 'Aj E(O'l),I=12

We can similarly define random vector {X, Y1. As before we can show that

* Xu)XYw, ) y is equivalent to

{F x ) wl Fn)> ,adtt
(nx) > F (YIXn(wi)) w2 n ta

P(Xn < x Yn < fF))x)F (n) (YIX NJ) d w

in 3.1 we hav

ni x

X X a....

.~~~~~~~ .. . . .. . . . . . . .. .M...~*..*
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* with respect to the one-dimensional Lebesque measure restricted on (0,1).

By Fubini's Theorem, we know that

X n(l, 2) = Xn(wl) -- X(wl) = x(wl, 2)

with respect to the two-dimensional Lebesque measure restricted on (0,1) x (0I).

Again using the conclusion about one dimension case, for any fixed 1 (011),

we get that

Y Yn(wlw2) - Y(wl,,w2) a.s.

with respect to the one-dimensional Lebesque measure restricted on (01).

* Again using Fubini's Theorem, we obtain

;;n Yn ,2) 1-- Y 1,2) a.s.

*] with respect to the two-dimensional Lebesque measure restricted on (0,1) x (01).

For d-dimension case, the proof is the same as in two-dimension case.

-7
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4. APPLICATIONS OF THEOREM 1

4.1 HELLEY-BRAY THEOREM ([2] and [4]).

If Fn -W F and g(x) is a continuous bounded function, then

fg(x)Fn(dx) fg(x)F(dx)

PROOF. Construct Xn - Fn X - F and Xn  X, according to Theorem 1.

" .Then by the dominated convergence theorem we have

fg(x)Fn(dx) = Eg(Xn) -- Eg(X) = g(x)F(dx)

4.2 (See [4])

If Fn - F, then fn(t) - f(t) uniformly on any bounded interval,

where fn and f are the characteristic functions of Fn and F, respectively.

PROOF.

Let T > 0 be any fixed number. Then

ifn(t)- f(t)f = JE(e - etX)

:': Eeit(Xnx) _ 1

< 2P(IX - Xi > L/T) + e s , t! < T.

Hence Ifn(t) - f(t)I -j 0 uniformly on [-T, TI.

.1'

%, ,, ,% , . :*, . p, ; T - . . . . ,...,,. " -.. ......... .... ,......::: :.:......:::-... .: ....
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4.3 (See [4]).

w
If F n -)- F and r > 0, then

.f IXI F(dx) < lrn JIXI rF n(dx).

* PROOF.

Let X n -Fn, X - F and X n X. Then what to be proved is equivalent

* to

EIX~r < lrn EIXnjr.

*The latter is just a special case of Fatou Lemma.

4.4

if U nd converges in distribution to F , Y n to Eal the degenerate

distribution concentrating its mass at a, and Zn ovre oE"b>0

* then {(Xn + Y )z I converges in distribution to G(x) =F(x - a) (See [4],

* Th.4.4.6 and the corollary after it).

* PROOF.

Since f(X n Y n Zn)1 converges in distribution to F(x)E a(y)Eb(z).

By Theorem 1, we can construct (Z , Yn , Zn)- (Z a ,b) -F(x)Ea(y)Eb(z).

*n n n
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Though the original proofs of the above four results are not very

complicated, the proofs given here are relatively easier. in the following

examples, the proofs will be involved with much difficulty if you do not

use Theorem 1.

4.5 (See [I], [7] and [8]).

m dSuppose that {Wi., I < i _< p, I < j < k-l}in )d{wij, I < I < P,
1I < j < k-1} and that {U1(m)  pfinL . ui. , I <j <P}.

U I _ 1 _< i < _3 _

Consider the detrimental equation

S - -- Um) = 0,m m-

where W m  mi WiI: px(k-1) Um  iUj)II pxp, with U(r) UjM)

m =  j (i-i Ii jmm

, , , (X _-)II

p-r I

)m)) . ,C m) E(m)'
ii * i ' 1
... ..............."'-Cm = m). (m) E(m),

E(m) E(m) 0
-- '"'

" 40
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gh -,r . W(m)
C() W(T) + h wjm. i a ah_ ,ah i+

j Ugh g ii h-1 h + ' '  ag-l1l

a, 1 < h < g< v

E { ij , i = r + l,...,p , j = ah_ + a,...

and

a0=0 ah ahI + uh , h 1,2,...,v a r <.P 1 > >0

Let m >,...,> > 0 be roots of this determinantal equation and let
Z5m) m( m)- - Ah), i = ah_ + ,....,a h..,, and Z m) = m m )

4m(mn),. Z(m) (ed in
i = r+ 1,...,p. Then the joint distrubution of (Z(m)) tends in

distribution to that of Z1 ,...,Z ,where Z >...> Za are the roots of

det(Chh + XhUh - ZI ) 0 , h = 1,2,...,v,

and Zr+1 >,...,> Z are the roots of

where 
+d,0

Ckk : t h(Wij + WJi ) II , i ,j = a h. I + 1,...,a h,

U k I u, t 'j  ah.1+ 1,..,a h , uij

k-1

a = W W , i, j = r +
f=r+1 it j

. .- '4.> 1 . , : ,C > i ' : . 1 i L '' -.-. . ., '' ''. ' .'''
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PROOF.

According to Theorem 1, without loss of generality, we can assume that

wm )  W and U )  .(m) -+ Ui pointwise. The explicit proof refersij ii --i uij

to [8] and is omitted here.

4.6 (See [2], [5], [6])

Suppose that (Xn1Xn2 Xnk) w (X1,... ,Xk) for any k, and that

-M -1-M kK IX i = 0 in probability, X and X a.s. converqes.
K- n-. k =K k=1 L= konresk=1 k=1

Also suppose that gk(t) is uniformly bounded in k and t. Then the sequence

of stochastic processes I X nkgk(t) weakly converges to the stochastic
00k=1 n

process Xkgk(t).
k=1

PROOF.

Set S = (X l ,x 2 ,...,): . fXkl < -}. Define
k=1

1 (x 9 x) 2 ...,) 1 (Y 1  21'*) !xk-ykJ. Then it is easy to see
k=1

that S is a complete separable metric space and (X , Xn,.)

(X1 , X2 ,...,) are random elements on S with property

(X nl,...,Xnk, ... ,1) w (XI,..., Xk,...,).

According to Theorem 1, we can assume that this convergence is true pointwise.

It is not difficult to show that

k Xnk gk(t) - Xkgk(t)l
k=1 k=1

M k IXnk-Xk1 - O. a.s.
k=1

and the proof is complete.
............ ,.... ..-- '.*.."-.-."-. -. " '.-'.-".'.-.".---.'''''-" -"- --- - "" "" ' ''"
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For details of this example, the reader is referred to Bai and Yin (1984).

The proof of Theorem 5.2 given there can be greatly simplified by using Theorem 1.

In all the above examples, we can use Skorokhod's Theorem. In the following

we shall give an example to show that Skorokhod's Theorem is unapplicable.

4.7

Suppose that Xp = (Xi ): pxn and Tp = (tl?)) satisfy

1) {Xiii,j=1,2,...} are i.i.d. random variables with mean zero and

variance 2 > O.

2) For each p, Tp is a non-negative definite random matrix.

3) X is independent of Tp.P

I k in P
4) - trace tp k n Hk as p - -, for each k.

5) R - y c (0 , ),pn

Then for any k > 1

1 trace (I X X' Tp)k -- E in pr.p npp k

where Ek is a constant depending only upon a , y and H1 ,... ,Hk, (See [9]).

PROOF.

1
Take Sp = R 2 P(P+I), the Euclidean Space

A trace T, i = 1,2,...,k}: Sp [0 CO )k and the measure on

Sp. derived by (Xp , T p).

p t  p p

-}- '.% - -- . *: -' *i -% ** -
.- ' "- -. ..

-"
. .> . . . -.' -.....--. . .> -. '- . '>. ,-
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By the assumptions we have

-1 w
p pl (HI"'. 'Hk)"

Thus, we can assume, by Theorem 1, that for fixed k,

1 i{-l trace Tp i = 1,2 H1  Hk} pointwise.
p pk

After truncation and centralization on {Xi , i , j1,2,...

we can prove that

EE' trace { Xp T IkIT E
p p p pp p k

and

E{[1 trace X- IT < C<
p=1 "P p pk H P

where Xp = II x(P)II, pxn and X O is the random variable obtained from

Xij by truncation and contralization. Thus

1 trace 4 X X' Tpk' a.s.
p ~p p pk$as

and consequently

-trace 4 X ' Tk ,a.s.- .p p p -+Eas

Since we have used Theorem 1, the above expression only implies that the convergence

to be proved is true in probability. The details of the proof can refer to [9].

Note that in this example Skorohod's Theorem is unapplicable, because S

defined here, is not the same.

•-.. ., .. - -.. .. * . i ' ..- * 1 . 1 + ._-+. , '- '-" .
a. . ,+.._, .+ , --.,++ • +. , ,.,+ ., , . . . I I'III 'l llM l l l l n l l ll~
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